
5 Testing

Testing is an extremely important component of most projects, whether it involves a circuit, a process,
power system, or software.

The testing plan should connect the requirements and the design to the adopted test strategy and
instruments. In this overarching introduction, given an overview of the testing strategy and your team’s
overall testing philosophy. Emphasize any unique challenges to testing for your system/design.

In the sections below, describe specific methods for testing. You may include additional types of testing, if
applicable to your design. If a particular type of testing is not applicable to your project, you must justify
why you are not including it.

When writing your testing planning consider a few guidelines:

● Is our testing plan unique to our project? (It should be)
● Are you testing related to all requirements? For requirements you’re not testing (e.g., cost related

requirements) can you justify their exclusion?
● Is your testing plan comprehensive?
● When should you be testing? (In most cases, it’s early and often, not at the end of the project)

5.1 Unit Testing

What units are being tested? How? Tools?

Three software units for testing - Leader selection, Display & UI, Sunspec Communication

To test these software units, we are going to be using multiple test cases to confirm that our software is
functioning correctly.

Unit Unit Testing / Method

Leader Selection Test algorithm with thread teams before implementing on our Raspberry Pis.
After moving the algorithm to Pis, confirm one leader is selected for each
possible system change (addition of a device, removal of a leader/follow, one
device on the network).

Display & UI Write unit tests for display software and input software. Correct signals are
sent to the Sunspec communication software.

Sunspec
Communication

Test various read/write sequences to a single inverter to verify that
modifications made are accurate and reliable. Do sequences for each mutable
register. Run SunSpec compliance tests as provided by Sunspec alliance.

Hardware Units for testing - Network topology, Display & UI (Button input/ Display functional), Microgrid
Outputs/Inputs

Unit Unit Testing / Method

Network Topology Ping devices across the network to ensure connections. Send a series of messages
across the network and assert successful acknowledgement. Use basic command
line pings.

Display & UI Create software tests to probe input from individual buttons or other inputs.
Confirm these are as expected.
Example test:
Connect button to RPi GPIO
Press button, verify that correct response occurred (print message, etc.)

Inverter
Configurations

Will discuss with PowerFilm contacts on how to test hardware to see if it works.
Since we do not have much experience in power systems, it would be hard for us
to come up with a testing environment for this hardware.

5.2 Interface Testing

What are the interfaces in your design? Discuss how the composition of two or more units (interfaces) are
being tested. Tools?

GUI Hardware Testing

We will likely implement a test screen where a user can manipulate the control hardware, and see
whether or not it is working properly. We are unsure how to implement testing beyond using the physical
hardware and seeing if the system responds appropriately.

Raspberry Pi to Raspberry Pi Communication (TCP/IP)

Here we will have clearly laid out parameters designating our packet information. We should be
able to check incoming packets, and make sure they are valid before the microcontrollers take any action
with the data. We may use something like modbus as a protocol to follow for this communication.

Raspberry Pi to Sunspec Command/AXS (TCP/IP)

The AXS port is meant to receive sunspec commands, if an invalid command is created we should
get notified by the AXS port, and/or we will be able to observe improper/missing configurations. We will
also write sanity checks to verify that messages being sent are of the correct format and in accordance with
the sunspec API. The sunspec API will most likely have some of this functionality built in.

AXS Port to Inverter/Microgrid (Modbus/Sunspec)

This connection/communication is largely proprietary and will be difficult to test. The
communication here isn’t necessarily defined by our team, but we will want to make sure it is working
properly by verifying that our messages are being received by the microgrid. We can do this through simply

making configuration changes and reading these messages back. Modbus should send responses with codes
that will verify changes that are received and let us know if it was successful (or alert us if there are issues)

5.3 Integration Testing

What are the critical integration paths in your design? Justification for criticality may come from your
requirements. How will they be tested? Tools?

The critical integration paths are making sure the User Interface fits well with the rest of the
codebase. While we have been assigned to program all the features of the old system into a more modern
design, we have also been assigned to make a very user friendly interface. That being said, the user interface
seems to be one of the project’s main actors and it's important that we put a lot of attention into making
sure all of the features of the interface display correctly and call the correct methods. We must also make
sure changes to configuration made through our UI are enacted across all applicable components of the
system. The scope of configurations we will provide has not yet been specified, but we will most likely verify
the results manually across parts of the system.

5.4 System Testing

Describe system level testing strategy. What set of unit tests, interface tests, and integration tests suffice for
system level testing? This should be closely tied to the requirements. Tools?

System level testing is end to end testing making sure the whole system works. So in our situation
making sure that the microgrids are able to talk to each other with a simple test. We would have to write up
some unit tests that check the code, where it shows that both the microgrids will be able to talk with each
other. We will also need to verify that the commands being sent are in fact being received and the proper
configuration changes are being enacted.

For system level testing, our project goals are to make the microgrid work in tandem with minimal
user interaction. To test this requirement, we will create a simple instruction set for connecting the pallets.
We will ask people without experience with the project to attempt to set them up.

5.5 Regression Testing

How are you ensuring that any new additions do not break the old functionality? What implemented
critical features do you need to ensure they do not break? Is it driven by requirements? Tools?

To ensure new additions do not cause regressions, we will run tests on commits merged to the main
branch making sure the application still works the same way. The most important features we will make
sure are intact are the backend SunSpec Management methods and the potential TMS interface methods.
These features are vital to the project and we must make sure that they are 100 percent functional. We will
do this through building a Continuous Integration/ Continuous Delivery system into our GitLab.

5.6 Acceptance Testing

How will you demonstrate that the design requirements, both functional and non-functional are being met?
How would you involve your client in the acceptance testing?

We will have branches corresponding to every feature that we will be adding to the project.

Alongside that, we will be using GitLab issues and milestones to keep track of our overall progress in the
project. The descriptions of these issues and milestones alongside any changes made to the original plan
during development will be relayed to the client during our meetings with them. We will also provide
images of any major milestones or problems encountered so that the client is up to date as much as
possible.

5.7 Security Testing (if applicable)

5.8 Results

What are the results of your testing? How do they ensure compliance with the requirements? Include
figures and tables to explain your testing process better. A summary narrative concluding that your design is
as intended is useful.

We have not conducted significant testing yet and do not have any testing results.

